Lecture 2 — 26/02/2025

Quantum nanostructures

- Growth and fabrication: a brief overview
- Electronic states: determination of quantum well energy levels
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Quantum nanostructures

Why reducing the dimensions?
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Quantum dots = artificial atoms
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Quantum nanostructures
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Quantum nanostructures

Threshold current density in laser diodes over the years
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Dimensionality reduction = laser threshold decrease

(Bernard-Duraffourg condition is more easily fulfilled)
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Epitaxial growth

add material
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new growth <

substrate <

Epitaxy: crystal growth proceeds layer-by-layer and
the layer structure complies with the substrate lattice

Growth on a foreign substrate: heteroepitaxy
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Epitaxial growth

Two main growth techniques:

- Molecular beam epitaxy (MBE)

- Metal organic vapor phase epitaxy (MOVPE)
Metal organic chemical vapor deposition (MOCVD)
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Molecular beam epitaxy (MBE) growth
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UHV growth technique
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MBE growth

RHEED electron gun

cryopanel (liquid N2) main shutter

substrate holder (rotating) N
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- No interaction between fluxes (= long mean free path)
- High vacuum enables the use of an electron beam probe (RHEED)

RHEED: reflection high energy electron diffraction
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MBE growth

In situ monitoring via reflection high energy electron diffraction (RHEED)

@ RHEED pattern
Electron beam
Fﬁ:ﬁam Subsirale Diffraction
pattern
Specular
Shadow edge reflection
Energy ~10 keV [110] [1710]

Twofold advantage of the RHEED technique:
» Specular reflection = access to the growth rate
 Diffraction pattern = surface reconstruction and growth mode (e.g., 2D vs 3D)
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MBE growth: in situ monitoring

MONOLAYER GROWTH ELECTRON BEAM RHEED SIGNAL
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Oscillations = absolute measurement of growth rate
Damping of oscillations due to surface roughening (dynamical effect)
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MBE growth: surface properties

GaAs surface probed by scanning N “Nominal”
tunneling microscopy (STM) P

“Vicinal” (misoriented)

400 x 400 nm?

75 x 75 nm?
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MBE growth

Production system (7 x 6 in.)

Mainly for GaAs based HEMTs and HBTs
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Metalorganic vapor phase epitaxy (MOVPE) growth

Organo-metallic precursors [MO (CH,)5-lll for example] are first transported by a carrier gas
(hydrogen, nitrogen) into the growth chamber where they decompose at the vicinity of a high-
temperature substrate surface. Group-V elements are also provided by the high-temperature
decomposition of other gas species like arsine (AsH,) for GaAs or NH; for GaN.
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MOVPE growth

Production system
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Prototypical heterostructure: the quantum well

High resolution transmission
electron microscopy (HRTEM)

CB

VB
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Prototypical heterostructure: the quantum well

Quantum well: crystal growth must be controlled at the atomic scale

~ (001) plane

® o Qﬁ e al2 = 1 molecular monolayer (ML)
N/ =1 Ga plane and 1 As plane
an W

X/ =/ a=5.65 A for GaAs

1 ML=283A

GaAs unit cell )
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Quantum dot fabrication

Growth, lithography, etching (and regrowth)
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< Top-down approach

Growth on high index Growth on prepatterned  Stranski-Krastanov
surfaces substrates growth
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Quantum dot fabrication

g Stranski-Krastanov (SK) growth mode (strain-induced islanding)

2D-to-3D transition driven by the imbalance between elastic (strain) and surface energy

h < h, _ Pseudomorphic growth
Elastic energy relaxation by
h > h/_ 3D island formation (visible

in real time through RHEED)

2D wetting

Lattice-mismatch

3D islands are buried to form QDs

GaN/AIN = 2.5%

InNAs/GaAs = 7.2% and Ge/Si = 4.2%
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Stranski-Krastanov (SK) InAs/GaAs quantum dots

Self-organized quantum dots (SQDs)
Self-assembled quantum dots (SAQDs)

3D growth mode of
highly strained InAs on GaAs

{EMMoisonetal CNET 93

AFM HRTEM
Access to surface properties/morphology, Access to atomic resolution thanks
e.g., QD size (apparent height + diameter) to electrons that are probing a
and density volume
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SK GaN/AIN QDs

density: 3-5 x 10" cm™
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Critical thickness of 2-3 MLs
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Stranski-Krastanov QDs

Density of QDs depends on the growth conditions (here GaN/AIN QDs)
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Quantum dots: scanning tunneling microscopy

Top view

Ge island on silicon

Physics of photonic semiconductor devices

Cross section
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55 x 55 nm?
InAs/GaAs QDs

Protruding atoms (mostly indium)
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SK InAs/GaAs QDs

QD plane stacking: self-organization
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Example of coherent vertical alignment due to strain fields
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GaAs/AlGaAs quantum dots

Growth on V-grooved surface

(111)B

{111}A

GaAs subsirate
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GaAs/AlGaAs quantum dots

Growth on V-grooved surface

GaAs QD
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Nanowires: top-down approach

Focused ion beam (FIB)
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Sample with matrix and impurity atoms
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Nanowires: bottom-up approach

I TU Eindhoven
Ordered InP
NW array
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Heterostructures: band offset

Different configurations
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In 11I-V semiconductor compounds sharing the same anion: AV,;=0.3 x AE,

— Common anion rule
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Heterostructures: band offset

Valence band edge offsets

Numbers are expressed in eV!
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Heterostructures: electronic states

Electron
wave
function

AlGaAs |
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Rectangular quantum well

Quantized energy levels in CB and VB

Parameters to be considered:

« \Well thickness

« Barrier height

» Carrier effective mass
* Dielectric mismatch
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The quantum well: confinement effects

What should be the well thickness to

— ensure a strong quantum confinement?
nk* h
I E T = Ags :—2 oy WihE=5eV)
m
Aqg = 21 A for GaAs Typical ionization

energy for e
Aqp = 12 A for GaN

2. 3D Bohr radius — extent of the excitonic
wavefunctions

A3p.Gaas ® 11 NM, azp goy = 3 NM

Quantum confinement effects significant only for very small objects (1-20 nm)
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Quantum well energy levels

Conduction electron energy levels

Approximation of the envelope wavefunction

in-plane wavefunction .
?velope wavefunction
=3 e Ll (r)x, (2
AB A
Periodic part of Bloch wavefunction

) Separation of in-plane (x-y) and vertical (z) components

1D Schrodinger-like equation

( U +vc(z)j;c,,(2)= fenzn(Z)

B 2m.(z) 0z
!

, confinement energy of the carriers
electron effective mass

Continuity at the interfaces of (i) y,(z) and (ii) particle current (1/m,’)(Jy,/cz)
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Quantum well energy levels

Infinite barrier height (1D case), V=

1,
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Solutions have the general expression:
2, (2)=Asin(k,z)+Bcos(k,z)

with the boundary conditions:
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Dimension of the 1D wavefunction equal to L2
= g, dimensionality oc L-9?
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Quantum well energy levels

Finite barrier height’
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The function y can be written as follows
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— }’(/ 1G. Bastard, Phys. Rev. B 24, 5693 (1981) (> 1200 citations) and Phys. Rev. B
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Quantum well energy levels

Finite barrier height

Even wave function case Odd wave function case
%, (z)=Acoskz, for |z|<L/2 or x,(z)=Asinkz, for |z| <L/2
=Bexp[—K(Z—L/2)] , forz>L/2 :Bexp[—K(z—L/2)}, forz>L/2
=Bexp| +x(z2+L/2)], forz<-1/2 =—Bexp| x(z+1/2)], forz<-L/2
21,2 2.2
where g,,,zhk*—vo, gn:—hK*, -V, <e<0
m, 2my
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Continuity conditions at z = +L/2 yield the well (= parity of the wave function)
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