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Physics of photonic semiconductor devices

Quantum nanostructures
- Growth and fabrication: a brief overview
- Electronic states: determination of quantum well energy levels



Why reducing the dimensions?

Quantum dots ≡ artificial atoms
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Quantum nanostructures



Density of states decreases
with the dimensionality
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Quantum nanostructures



Dimensionality reduction  laser threshold decrease
(Bernard-Duraffourg condition is more easily fulfilled)

Threshold current density in laser diodes over the years
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Quantum nanostructures

d  0.1-1 m
Double heterostructure (DHS)

 Transparency condition for semiconductors (fall semester)

No quantization phenomena
at play in a DHS!



Epitaxy: crystal growth proceeds layer-by-layer and 
the layer structure complies with the substrate lattice

Growth on a foreign substrate: heteroepitaxy
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Epitaxial growth



Two main growth techniques:

- Molecular beam epitaxy (MBE)

- Metal organic vapor phase epitaxy (MOVPE)
Metal organic chemical vapor deposition (MOCVD)
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Epitaxial growth



UHV growth technique
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Molecular beam epitaxy (MBE) growth



- No interaction between fluxes ( long mean free path)
- High vacuum enables the use of an electron beam probe (RHEED)

RHEED: reflection high energy electron diffraction
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MBE growth



RHEED pattern

[１１０] [１１０]-

In situ monitoring via reflection high energy electron diffraction (RHEED)
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Diffraction 
pattern

Specular 
reflection

Energy ~10 keV
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MBE growth

Twofold advantage of the RHEED technique:
• Specular reflection  access to the growth rate
• Diffraction pattern  surface reconstruction and growth mode (e.g., 2D vs 3D)
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Oscillations  absolute measurement of growth rate
Damping of oscillations due to surface roughening (dynamical effect)
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MBE growth: in situ monitoring



400  400 nm² 100 x100 nm²

GaAs surface probed by scanning 
tunneling microscopy (STM) 

75  75 nm²

“Vicinal” (misoriented)

“Nominal”
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MBE growth: surface properties



Production system (7  6 in.)

Mainly for GaAs based HEMTs and HBTs
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MBE growth



Organo-metallic precursors [MO (CH3)3-III for example] are first transported by a carrier gas 
(hydrogen, nitrogen) into the growth chamber where they decompose at the vicinity of a high-
temperature substrate surface. Group-V elements are also provided by the high-temperature 
decomposition of other gas species like arsine (AsH3) for GaAs or NH3 for GaN.  
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Metalorganic vapor phase epitaxy (MOVPE) growth



Production system
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MOVPE growth



CB

VB

High resolution transmission 
electron microscopy (HRTEM)
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Prototypical heterostructure: the quantum well



GaAs unit cell

(001) plane

a

a/2  1 molecular monolayer (ML)
= 1 Ga plane and 1 As plane

a = 5.65 Å for GaAs

1 ML = 2.83 Å

Quantum well: crystal growth must be controlled at the atomic scale
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Prototypical heterostructure: the quantum well



 Top-down approach

 Bottom-up approach
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Quantum dot fabrication



Pseudomorphic growth

Elastic energy relaxation by 
3D island formation (visible 
in real time through RHEED)

3D islands are buried to form QDs

h < hc

h > hc

2D wetting 
layer

GaN/AlN  2.5%
InAs/GaAs  7.2% and Ge/Si  4.2%

Stranski-Krastanov (SK) growth mode (strain-induced islanding)
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Quantum dot fabrication

Lattice-mismatch

2D-to-3D transition driven by the imbalance between elastic (strain) and surface energy



Self-organized quantum dots (SQDs)
Self-assembled quantum dots (SAQDs)
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Stranski-Krastanov (SK) InAs/GaAs quantum dots

AFM HRTEM

Access to surface properties/morphology, 
e.g., QD size (apparent height + diameter) 

and density

Access to atomic resolution thanks 
to electrons that are probing a 

volume



density: 3-5  1011 cm-2

0.4  0.4 µm²

AFM

Critical thickness of 2-3 MLs

2 nm

WL

30°

(1013)

(0001)

HRTEM
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SK GaN/AlN QDs

Sixfold symmetry



Density of QDs depends on the growth conditions (here GaN/AlN QDs)
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Stranski-Krastanov QDs

2  2 m2



Ge island on silicon InAs/GaAs QDs

55  55 nm²
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Quantum dots: scanning tunneling microscopy

Top view Cross section

Protruding atoms (mostly indium)



QD plane stacking: self-organization

Cross section TEM
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Example of coherent vertical alignment due to strain fields
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SK InAs/GaAs QDs



Growth on V-grooved surface

E. Kapon – LPN - EPFL
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GaAs/AlGaAs quantum dots



E. Kapon – LPN - EPFL
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GaAs/AlGaAs quantum dots

Growth on V-grooved surface



Focused ion beam (FIB)
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Nanowires: top-down approach
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NIST
Ordered GaN
NW array

TU Eindhoven
Ordered InP
NW array

NTT technical review
Univ. Politcn. Madrid
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Nanowires: bottom-up approach



Different configurations

In III-V semiconductor compounds sharing the same anion: VVB = 0.3  Eg

Type I
Type II

Type II
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Heterostructures: band offset

 Common anion rule

Eg1 Eg2
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Valence band edge offsets

Physics of photonic semiconductor devices

Heterostructures: band offset

Numbers are expressed in eV!
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Quantized energy levels in CB and VB

Parameters to be considered:

• Well thickness
• Barrier height
• Carrier effective mass
• Dielectric mismatch

Rectangular quantum well
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Heterostructures: electronic states



Lw

What should be the well thickness to 
ensure a strong quantum confinement?

2 2
1

2 2
* *

. dB
k hE
m m E

  


dB ≈ 21 Å for GaAs

dB ≈ 12 Å for GaN

(with E ≈ 5 eV)

Quantum confinement effects significant only for very small objects (1-20 nm)

Typical ionization 
energy for e-

2. 3D Bohr radius  extent of the excitonic 
wavefunctions
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The quantum well: confinement effects

a3D,GaAs  11 nm, a3D,GaN  3 nm



Conduction electron energy levels

Approximation of the envelope wavefunction
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Separation of in-plane (x-y) and vertical (z) components

Periodic part of Bloch wavefunction

envelope wavefunction
in-plane wavefunction

electron effective mass
confinement energy of the carriers

Continuity at the interfaces of (i) n(z) and (ii) particle current (1/me
*)(n/z)
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Quantum well energy levels
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Solutions have the general expression:
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   

   

0 0n n z

n n n
z

L

nz A k z k
L

 


 

 hence sin with

   2 2 2 2
0

21
2

sinzL z
n n

z

Lz dz A k z dz A A
L


      

2 2 20
2
² ² ²

² ² ²
n n n

n n n n n
mk k

m z z
     

    
 




i.e. with

Infinite barrier height (1D case), Vc = 
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Dimension of the 1D wavefunction equal to L-1/2 !
 n dimensionality  L-d/2
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Quantum well energy levels
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The function  can be written as follows

1G. Bastard, Phys. Rev. B 24, 5693 (1981) (> 1200 citations) and Phys. Rev. B 
25, 7584 (1982) (> 600 citations).
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Quantum well energy levels

In-plane wavevector
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Inversion symmetry around the center of 
the well ( parity of the wave function)Continuity conditions at z = L/2 yield

   

   

* *

* *

2

2

tan

cot

A B

A B

k m kL m

k m kL m







 

Number of bound states
1

2 2
0

2 2
21 Int if

*
* *A
A B

m V L
m m



        


Eqs. solved numerically 
or graphically

Finite barrier height
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Quantum well energy levels


