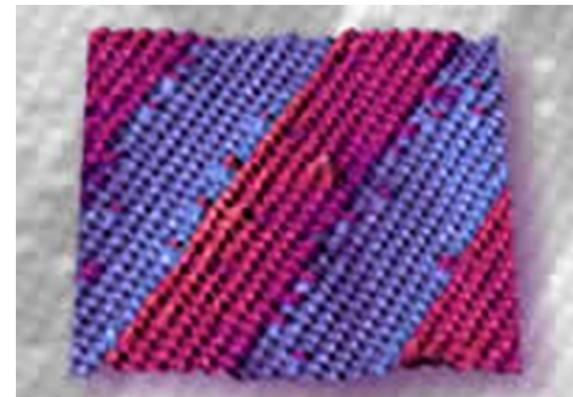


Lecture 2 – 26/02/2025

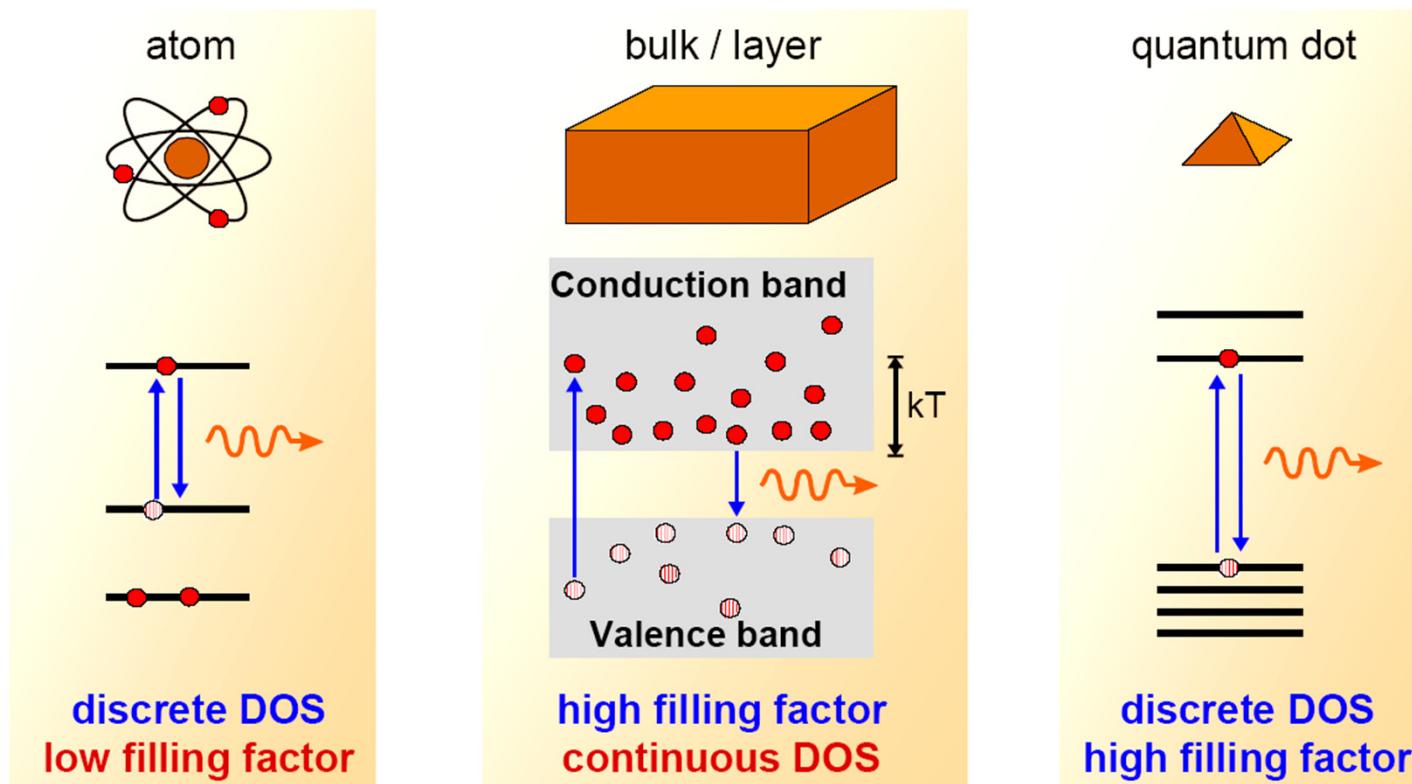
Quantum nanostructures

- Growth and fabrication: a brief overview
- Electronic states: determination of quantum well energy levels



Quantum nanostructures

Why reducing the dimensions?



Quantum dots \equiv artificial atoms

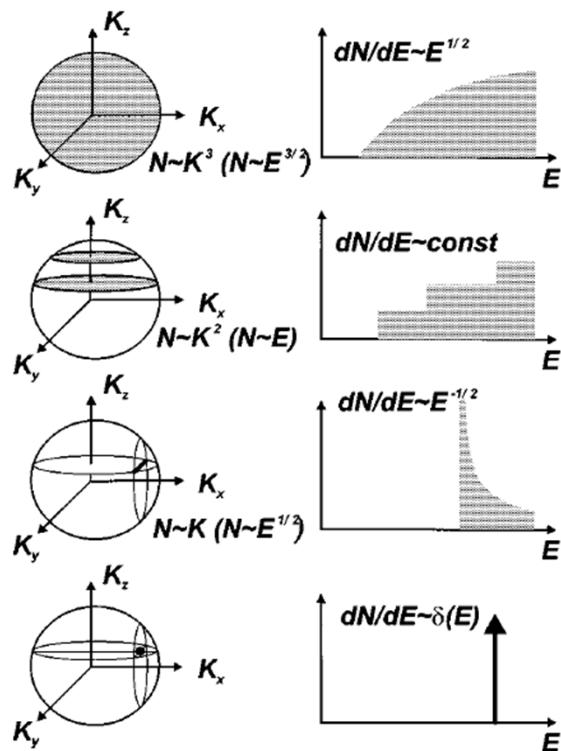
Quantum nanostructures

3D
Bulk

2D
Quantum well

1D
Quantum wire

0D
Quantum dot

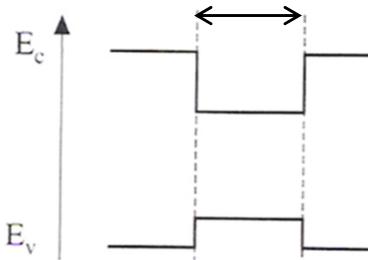


Density of states decreases with the dimensionality

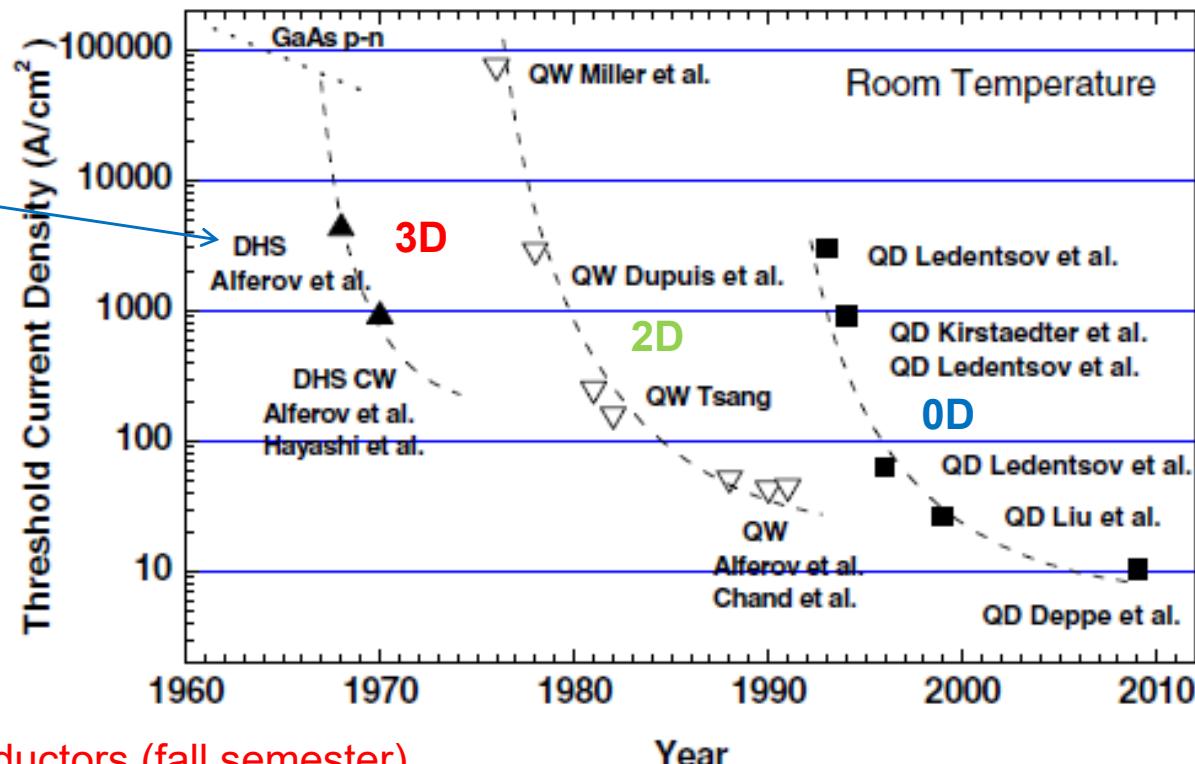
Quantum nanostructures

Threshold current density in laser diodes over the years

Double heterostructure (DHS)
 $d \in 0.1\text{-}1 \mu\text{m}$



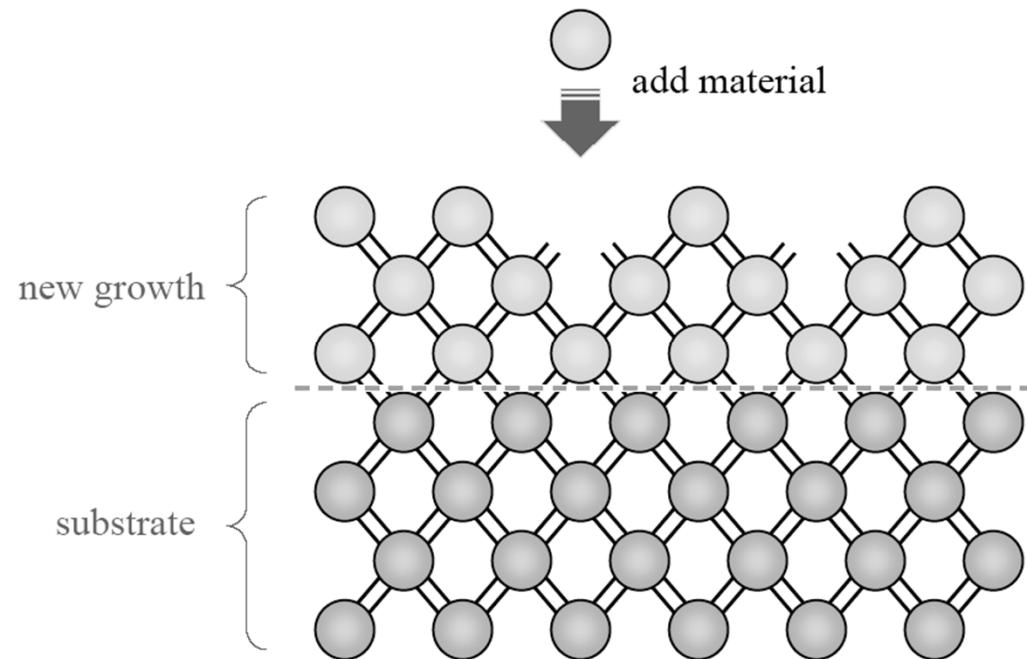
No quantization phenomena
at play in a DHS!



≡ Transparency condition for semiconductors (fall semester)

Dimensionality reduction \Rightarrow laser threshold decrease
(Bernard-Duraffourg condition is more easily fulfilled)

Epitaxial growth



Epitaxy: crystal growth proceeds layer-by-layer and the layer structure complies with the substrate lattice

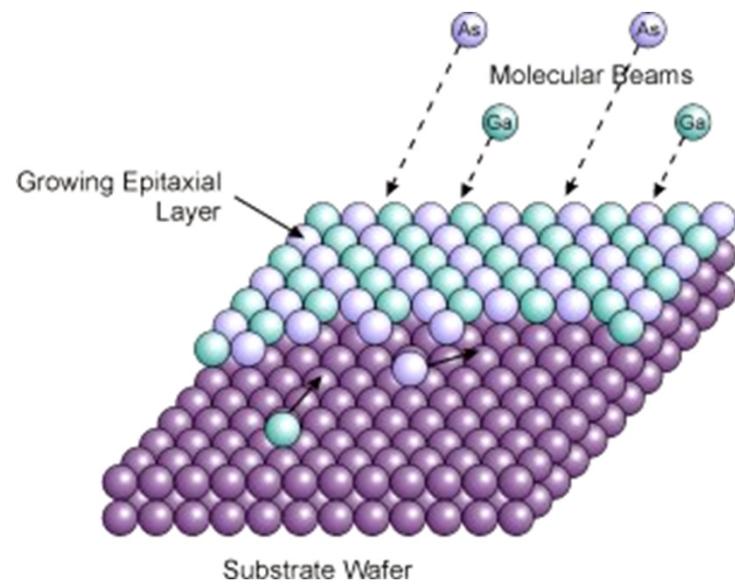
Growth on a foreign substrate: **heteroepitaxy**

Epitaxial growth

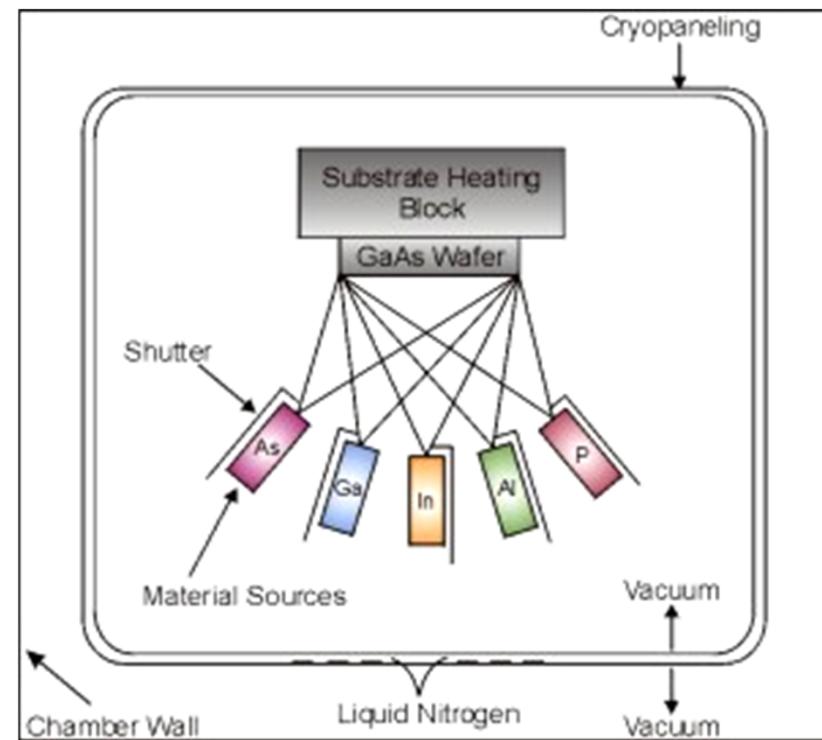
Two main growth techniques:

- Molecular beam epitaxy (MBE)
- Metal organic vapor phase epitaxy (MOVPE)
Metal organic chemical vapor deposition (MOCVD)

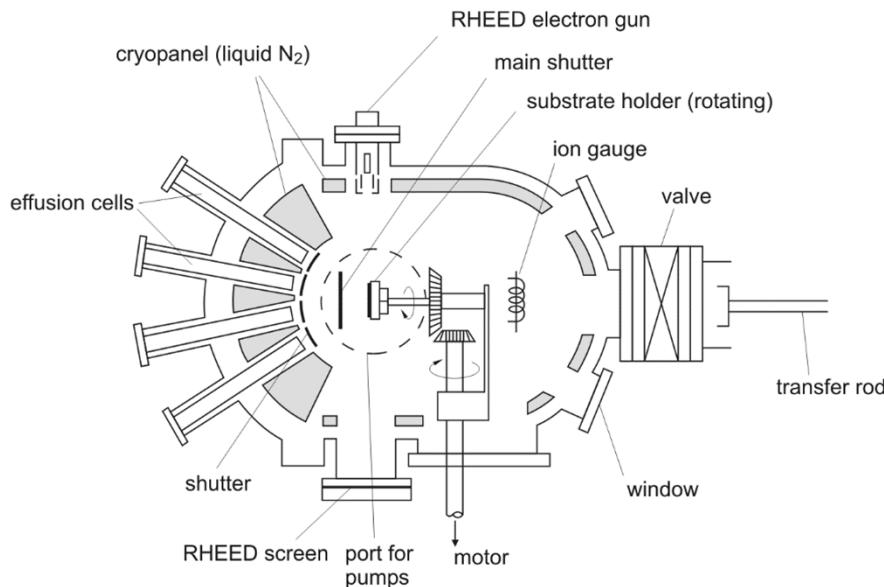
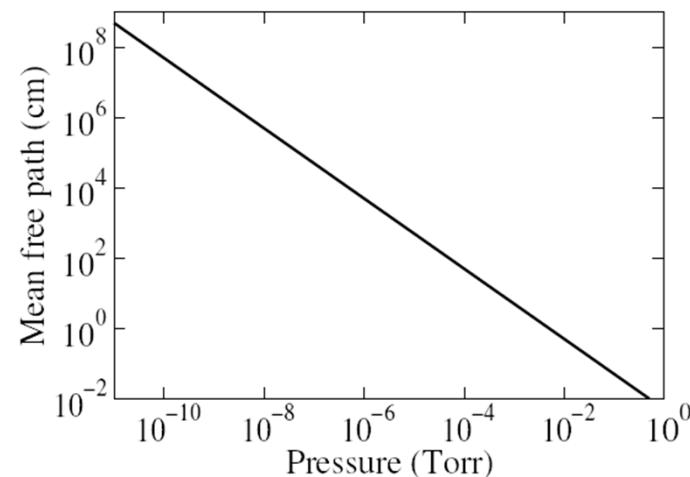
Molecular beam epitaxy (MBE) growth



UHV growth technique



MBE growth

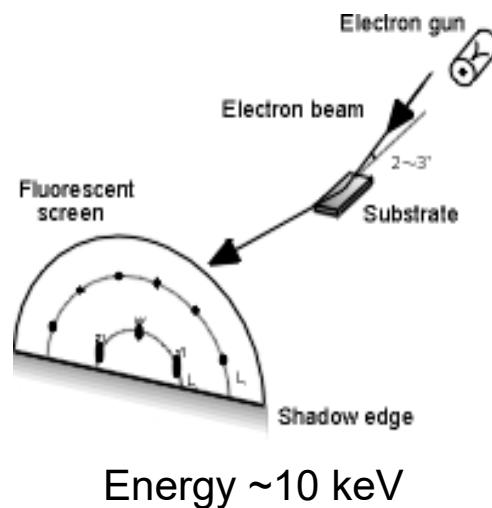


- No interaction between fluxes (\Rightarrow long mean free path)
- High vacuum enables the use of an electron beam probe (RHEED)

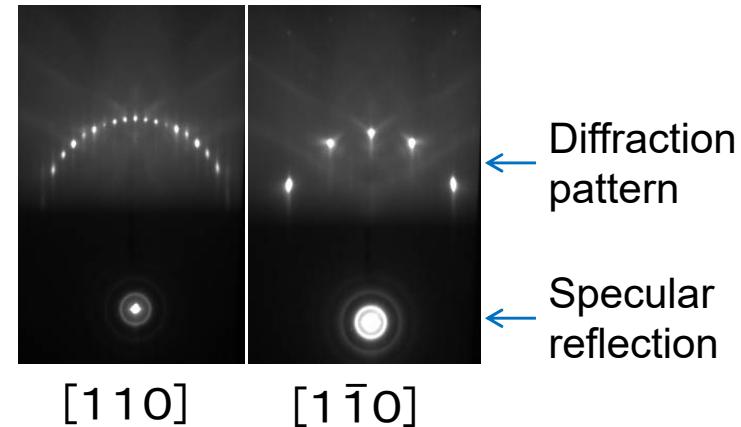
RHEED: reflection high energy electron diffraction

MBE growth

In situ monitoring via reflection high energy electron diffraction (RHEED)



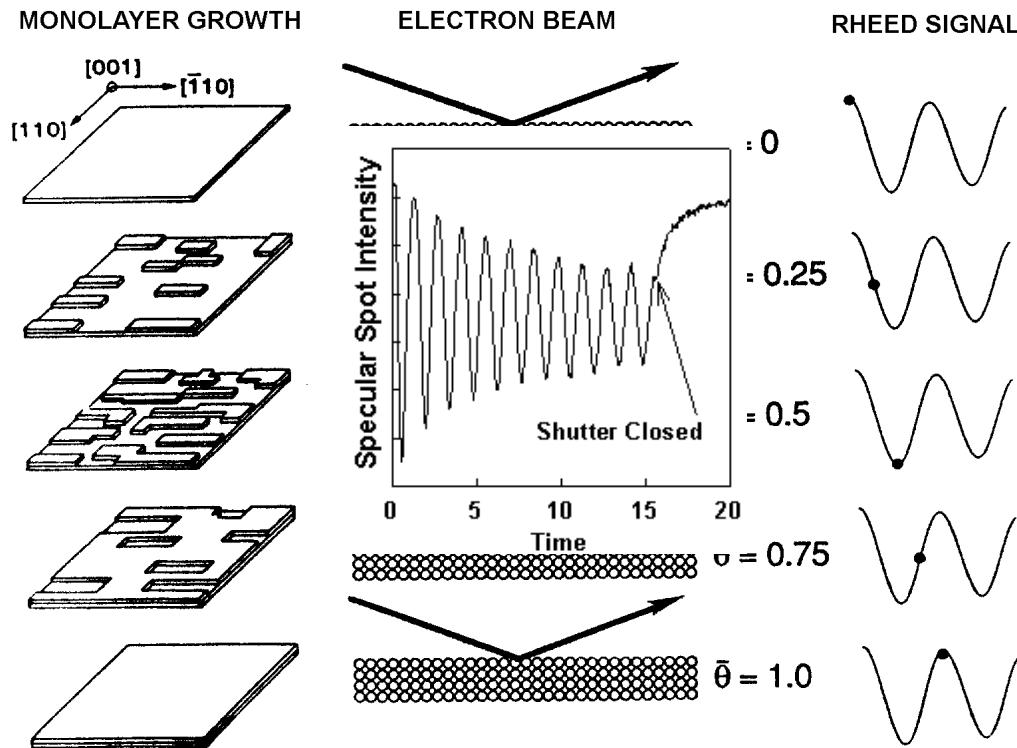
RHEED pattern



Twofold advantage of the RHEED technique:

- Specular reflection \Rightarrow access to the growth rate
- Diffraction pattern \Rightarrow surface reconstruction and growth mode (e.g., 2D vs 3D)

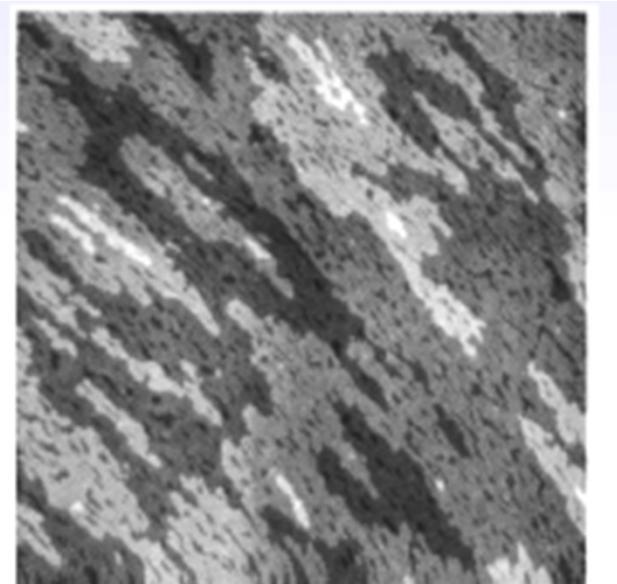
MBE growth: *in situ* monitoring



Oscillations \Rightarrow absolute measurement of growth rate
Damping of oscillations due to surface roughening (dynamical effect)

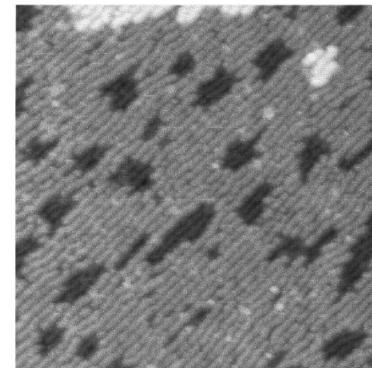
MBE growth: surface properties

GaAs surface probed by scanning
tunneling microscopy (STM)

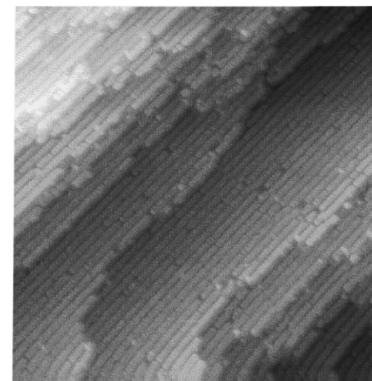


$400 \times 400 \text{ nm}^2$

“Nominal”



“Vicinal” (misoriented)



$75 \times 75 \text{ nm}^2$

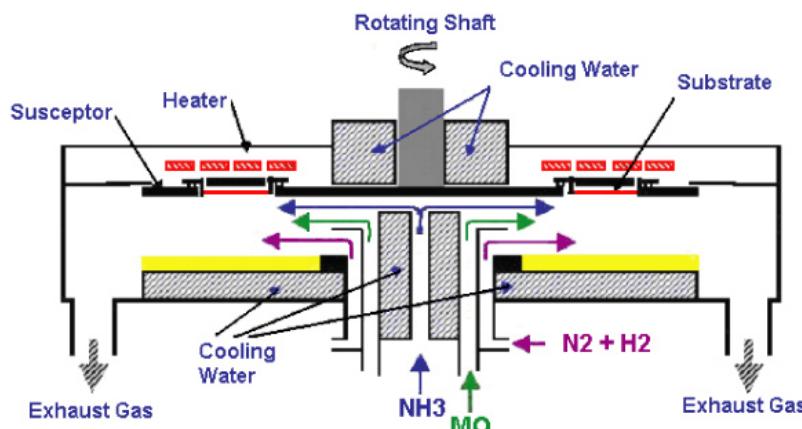
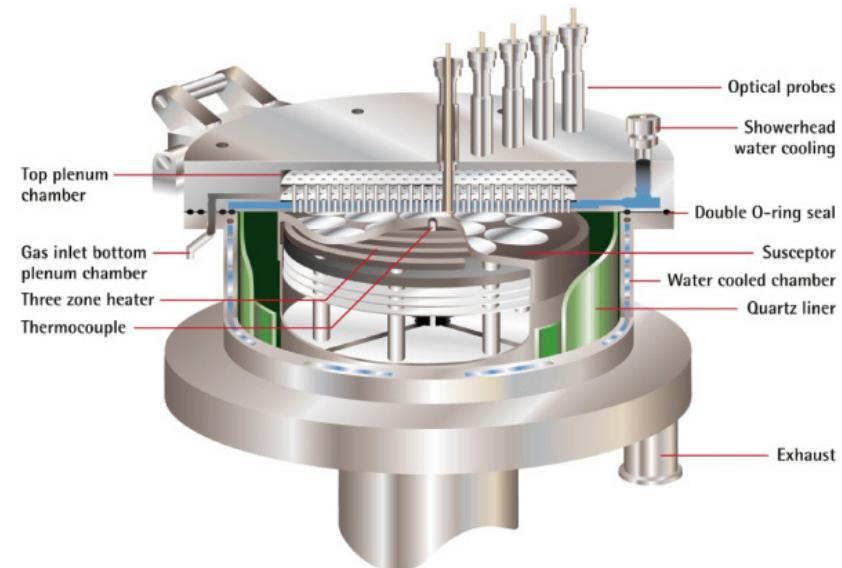
MBE growth

Production system (7×6 in.)

Mainly for GaAs based HEMTs and HBTs

Metalorganic vapor phase epitaxy (MOVPE) growth

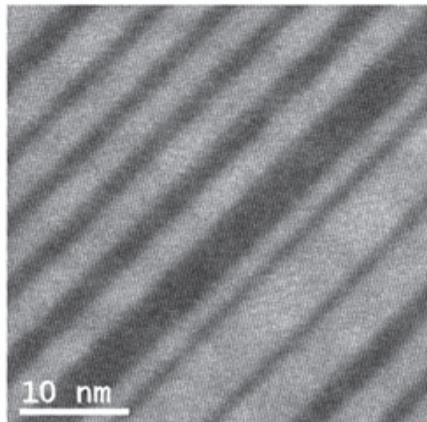
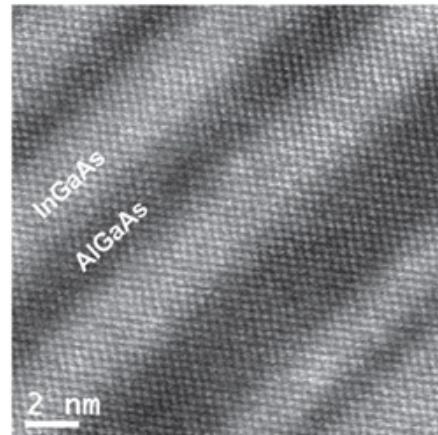
Organometallic precursors [MO (CH_3)₃-III for example] are first transported by a carrier gas (hydrogen, nitrogen) into the growth chamber where they decompose at the vicinity of a high-temperature substrate surface. Group-V elements are also provided by the high-temperature decomposition of other gas species like arsine (AsH_3) for GaAs or NH_3 for GaN.



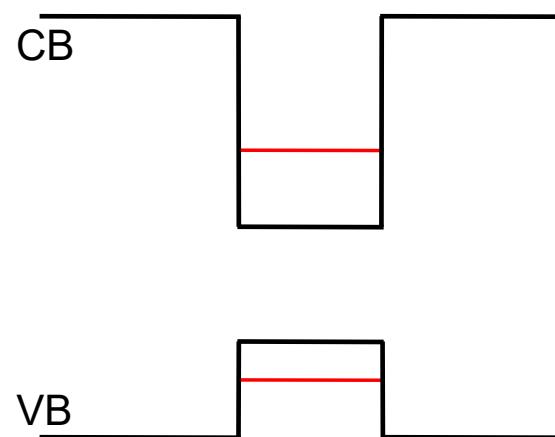
MOVPE growth

Production system

Prototypical heterostructure: the quantum well

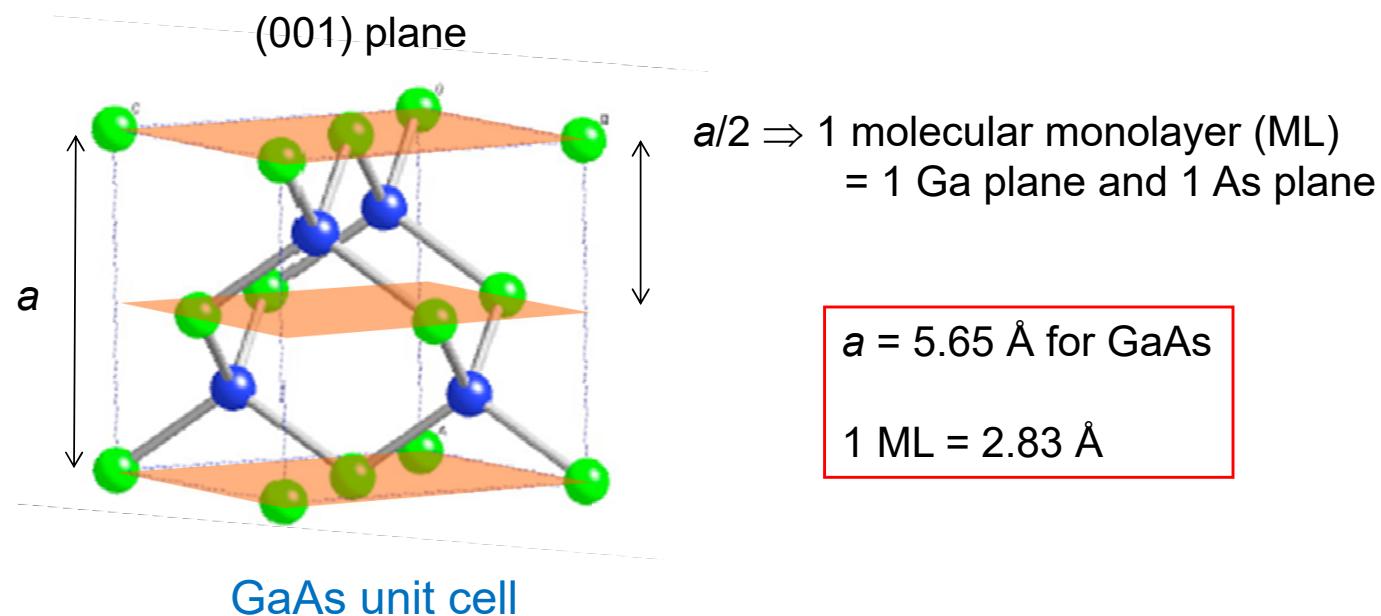


High resolution transmission electron microscopy (HRTEM)

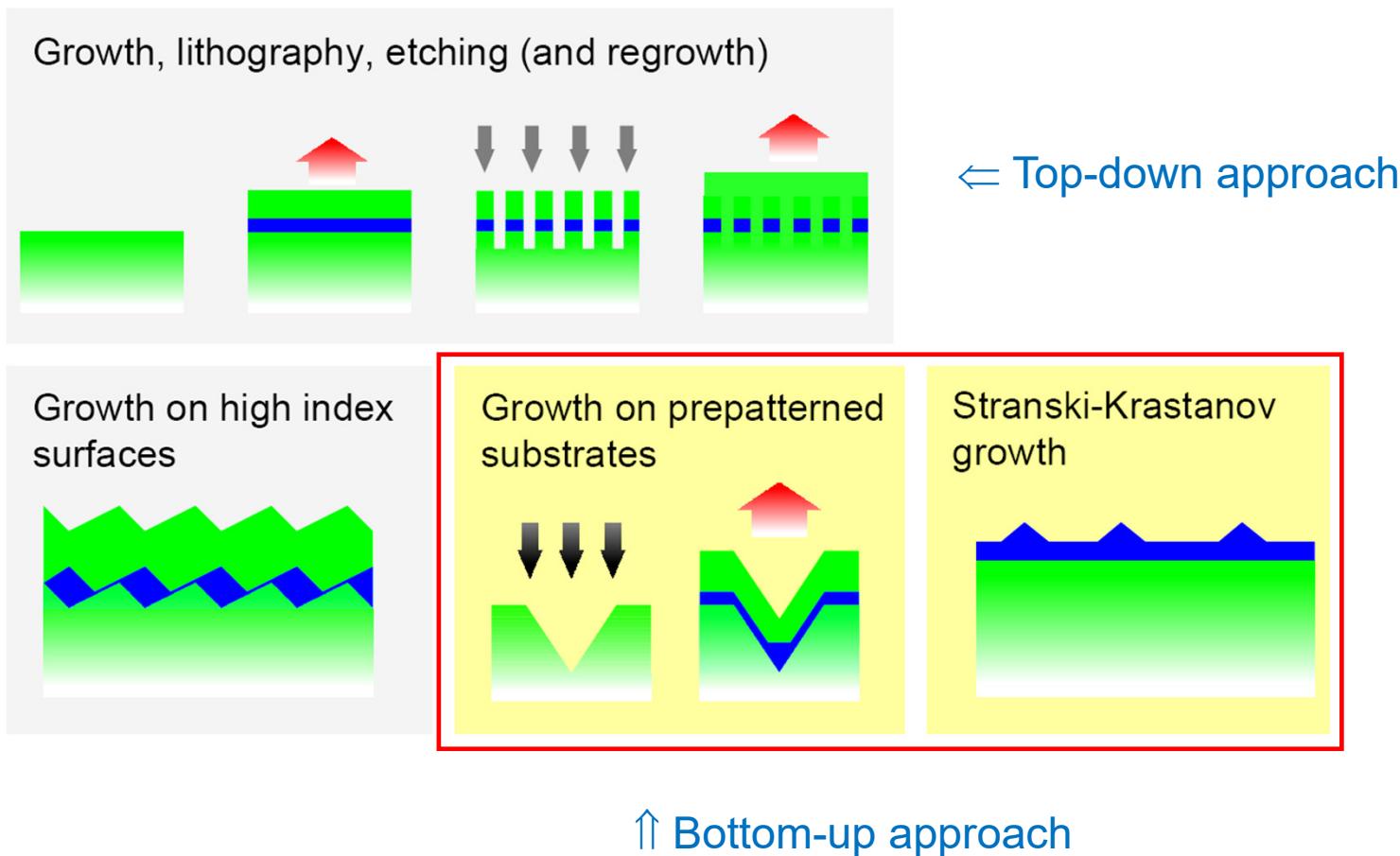


Prototypical heterostructure: the quantum well

Quantum well: crystal growth must be controlled at the atomic scale



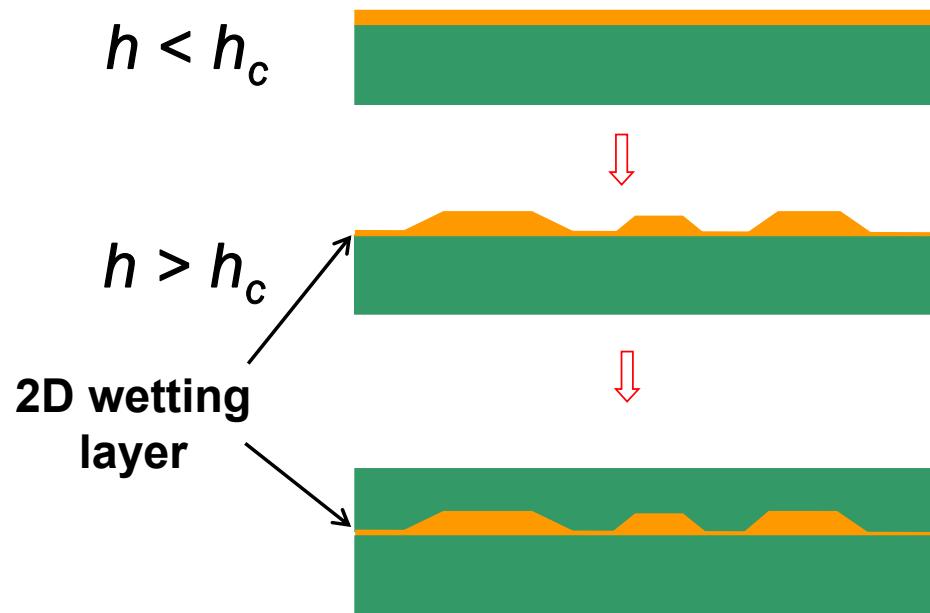
Quantum dot fabrication



Quantum dot fabrication

Stranski-Krastanov (SK) growth mode (strain-induced islanding)

2D-to-3D transition driven by the imbalance between elastic (strain) and surface energy



Pseudomorphic growth

Elastic energy relaxation by 3D island formation (visible in real time through RHEED)

3D islands are buried to form QDs

Lattice-mismatch

GaN/AlN \Rightarrow 2.5%

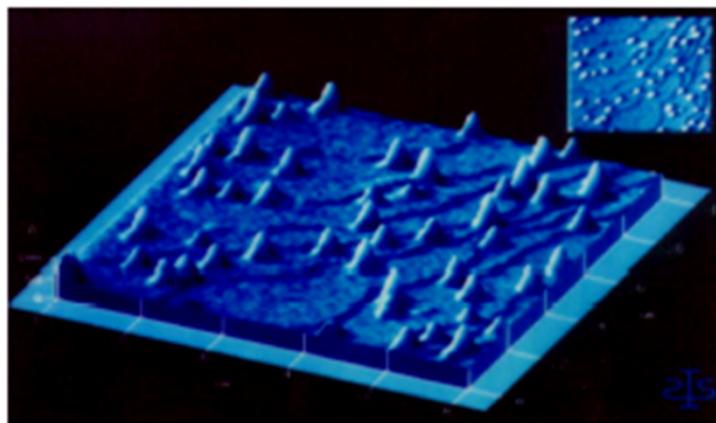
InAs/GaAs \Rightarrow 7.2% and Ge/Si \Rightarrow 4.2%

Stranski-Krastanov (SK) InAs/GaAs quantum dots

Self-organized quantum dots (SQDs)
Self-assembled quantum dots (SAQDs)

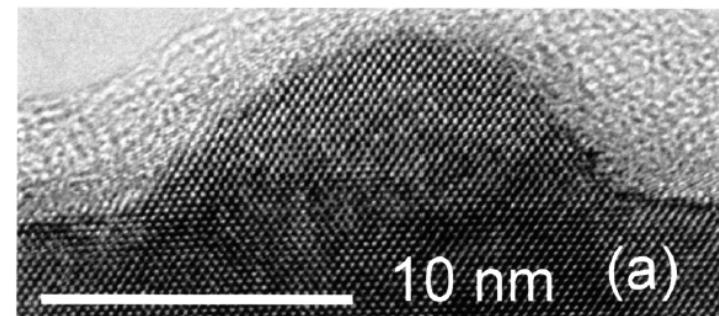
3D growth mode of
highly strained InAs on GaAs

AFM Moison et al, CNET 93



AFM

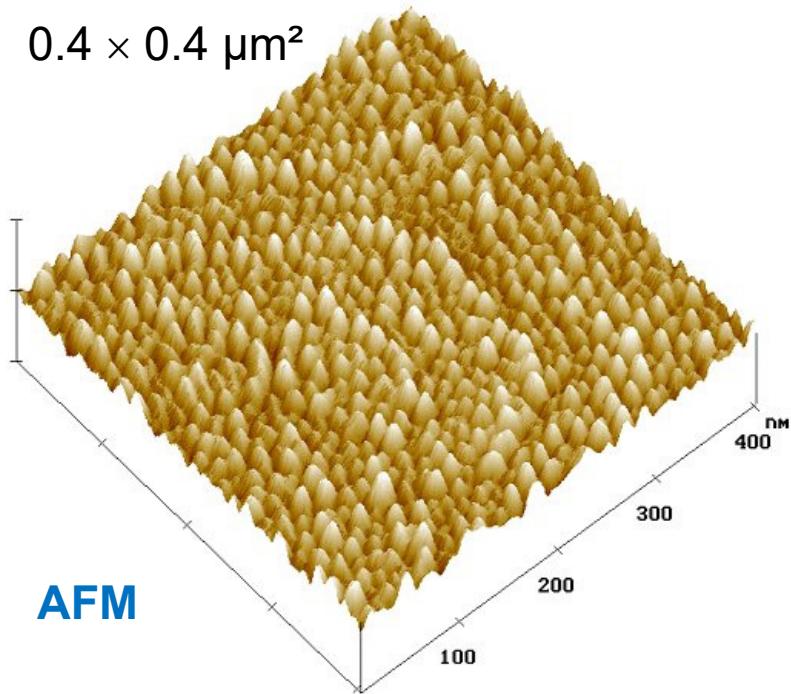
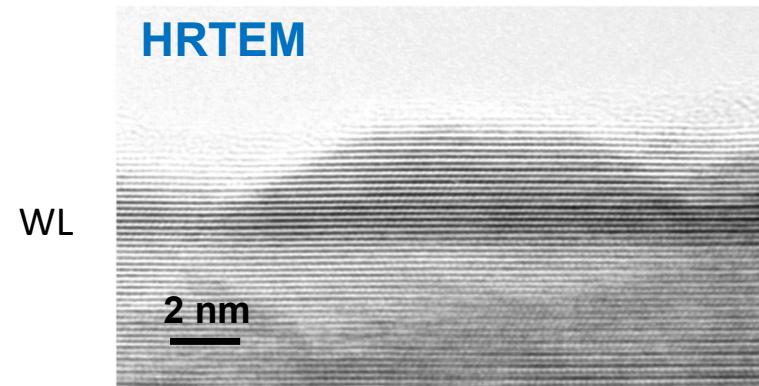
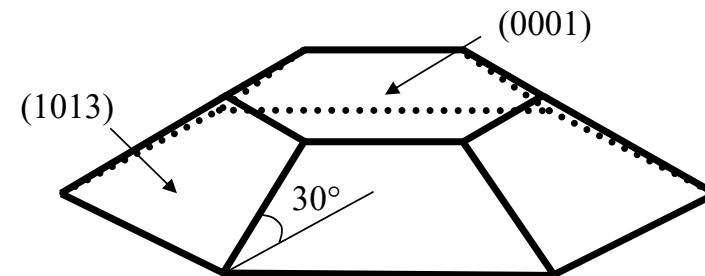
Access to surface properties/morphology,
e.g., QD size (apparent height + diameter)
and density



HRTEM

Access to atomic resolution thanks
to electrons that are probing a
volume

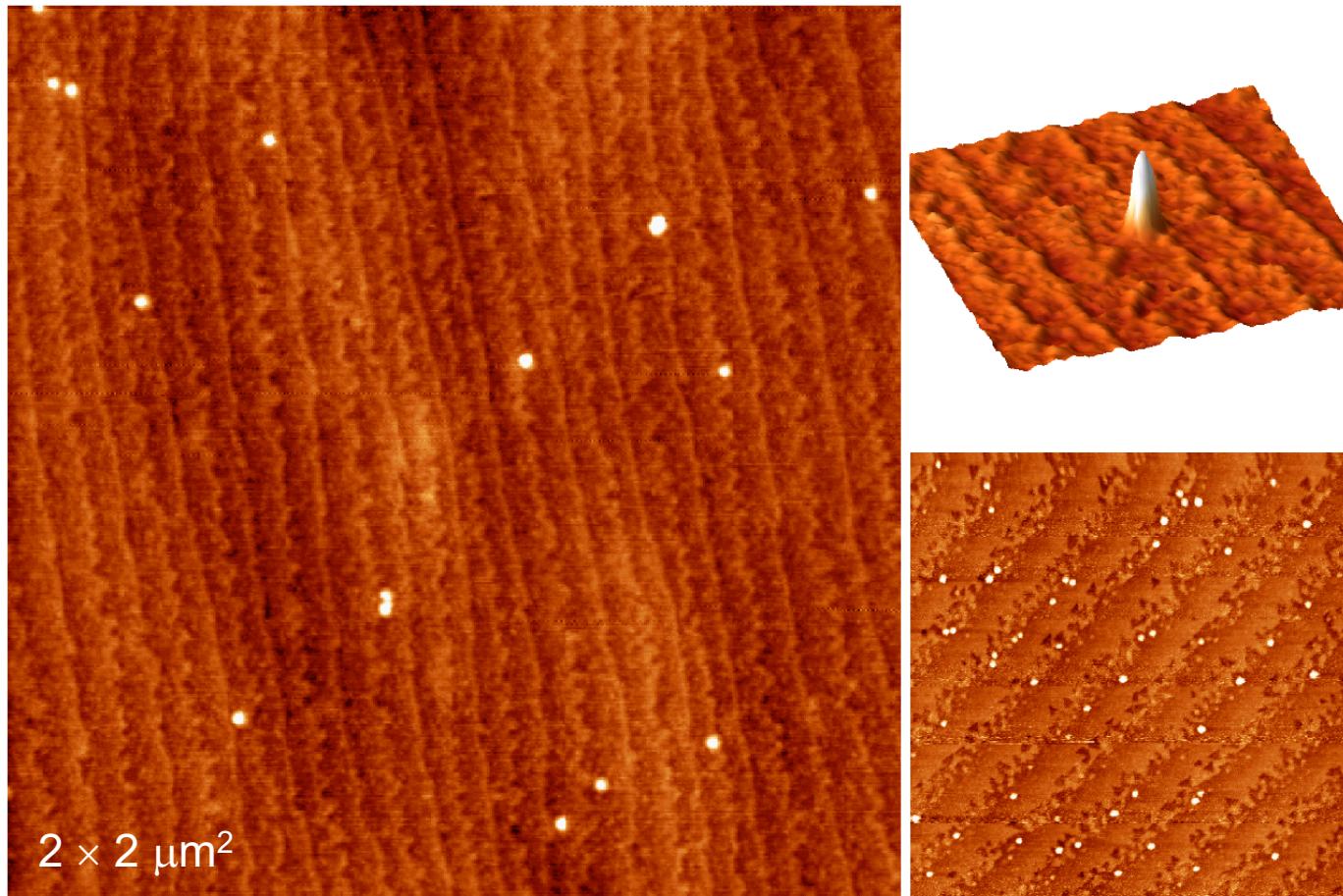
SK GaN/AlN QDs



Critical thickness of 2-3 MLs

Sixfold symmetry

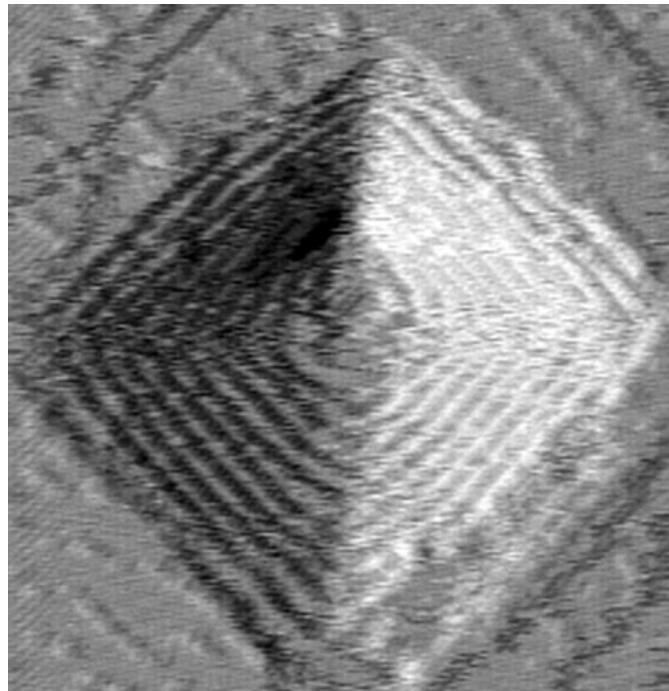
Stranski-Krastanov QDs



Density of QDs depends on the growth conditions (here GaN/AlN QDs)

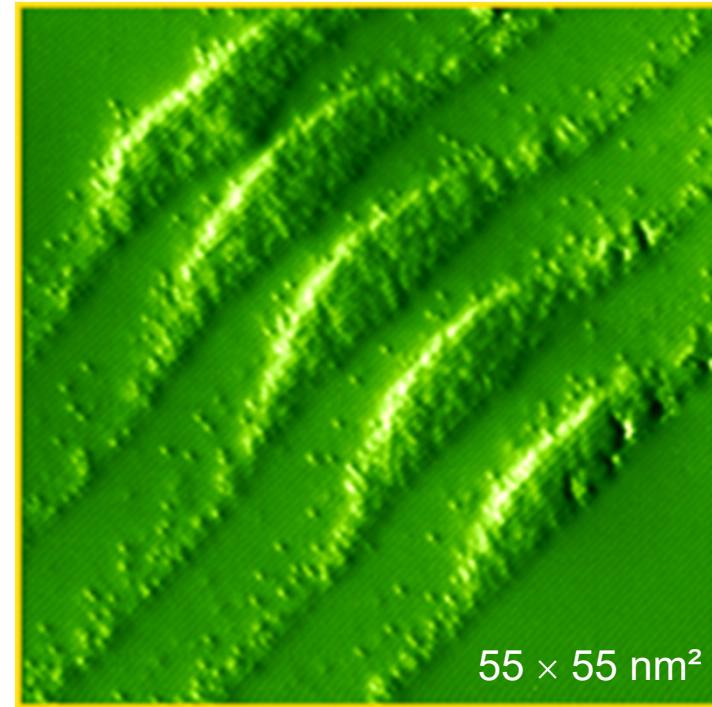
Quantum dots: scanning tunneling microscopy

Top view



Ge island on silicon

Cross section

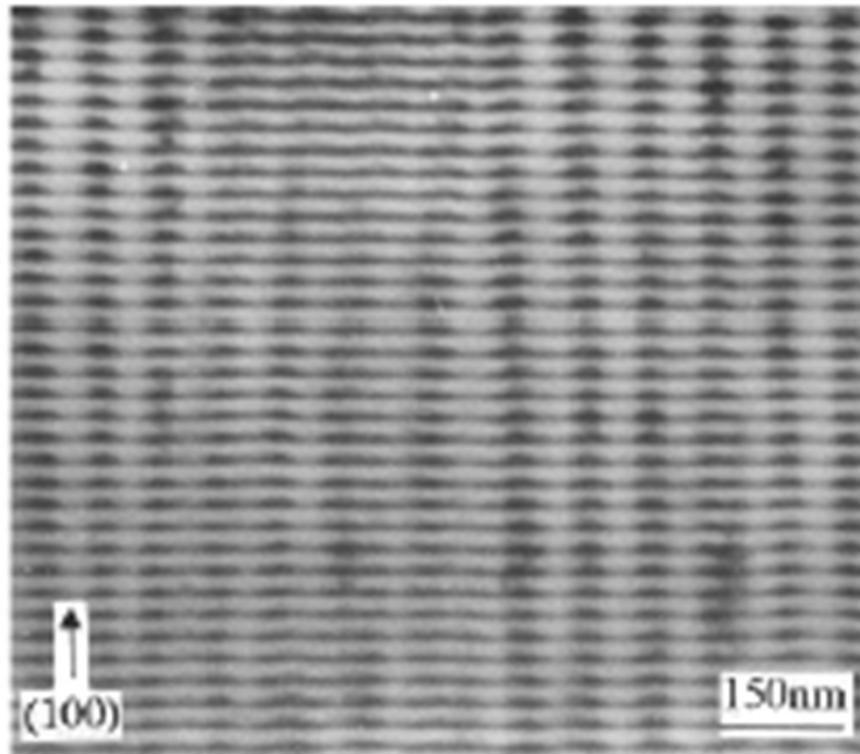


InAs/GaAs QDs

Protruding atoms (mostly indium)

SK InAs/GaAs QDs

QD plane stacking: self-organization

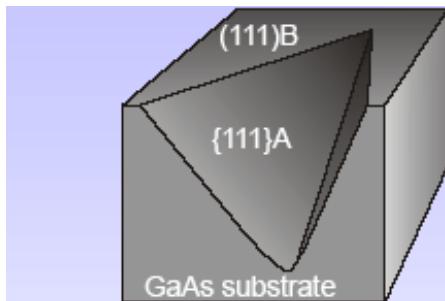


Cross section TEM

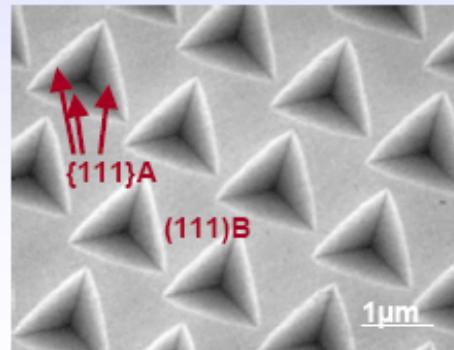
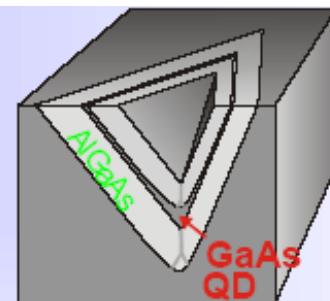
Example of coherent vertical alignment due to strain fields

GaAs/AlGaAs quantum dots

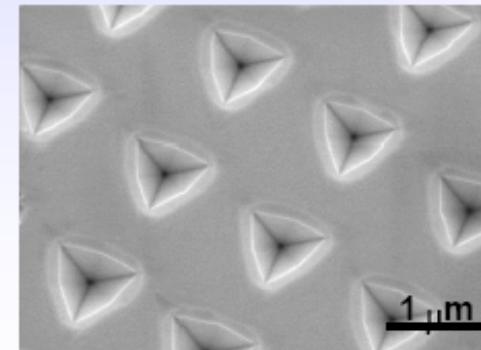
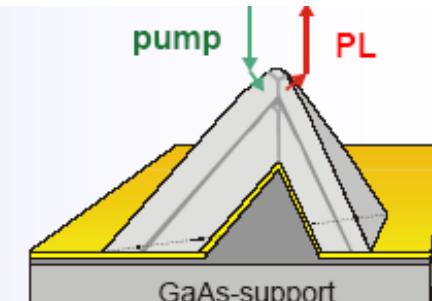
Growth on V-grooved surface



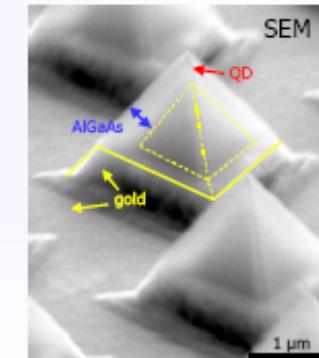
(111B) substrates patterning



Self-limited OMVCD growth



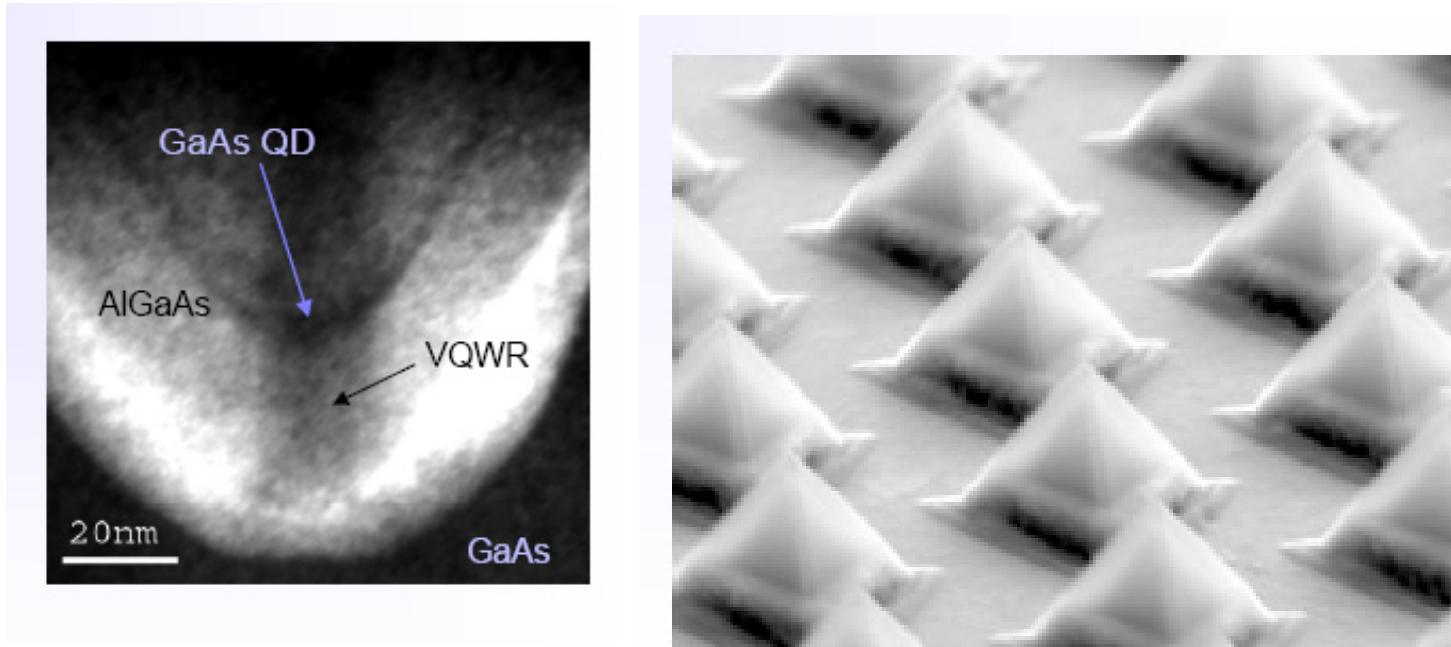
Substrate removal



E. Kapon – LPN - EPFL

GaAs/AlGaAs quantum dots

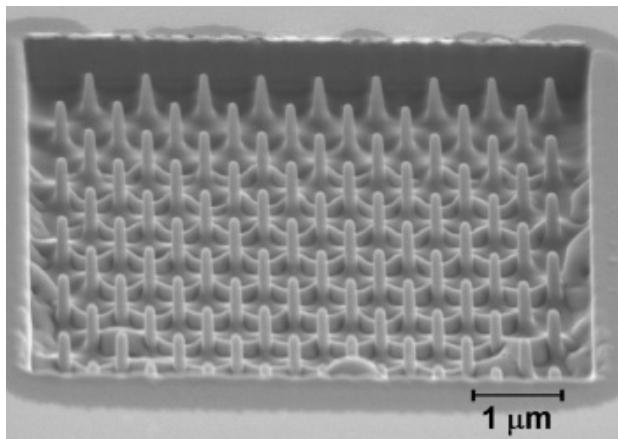
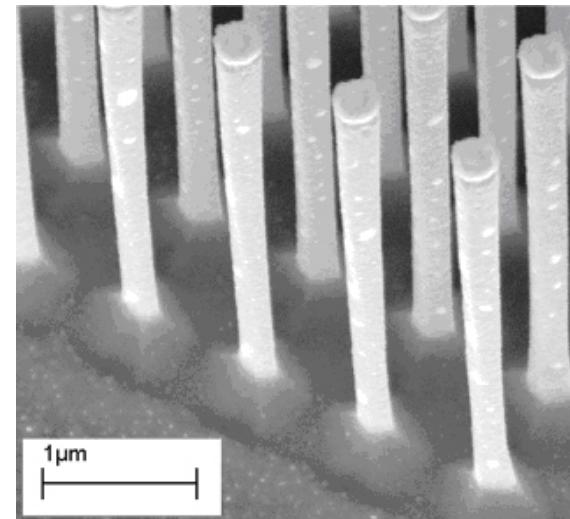
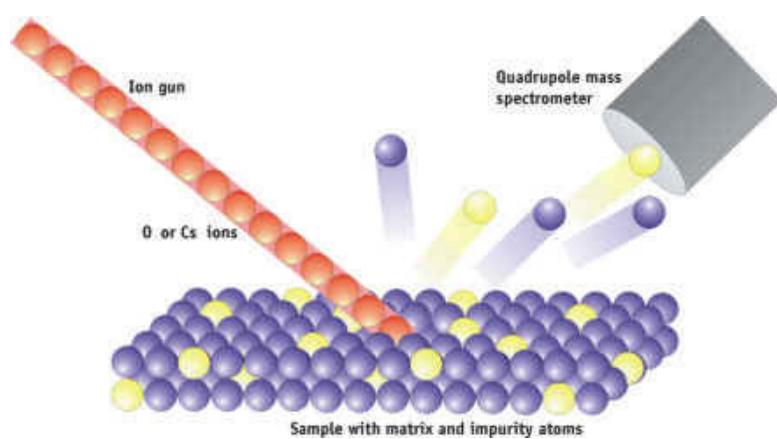
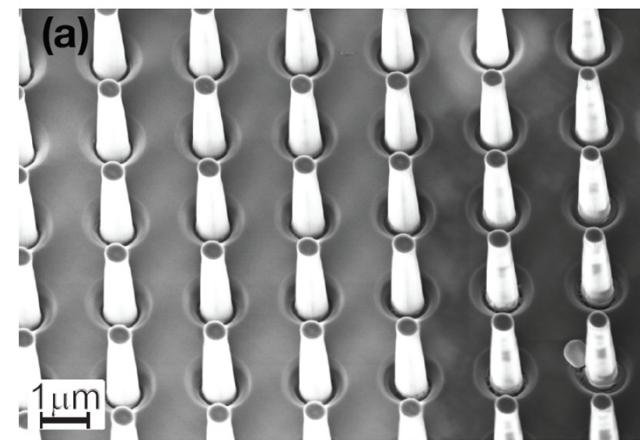
Growth on V-grooved surface



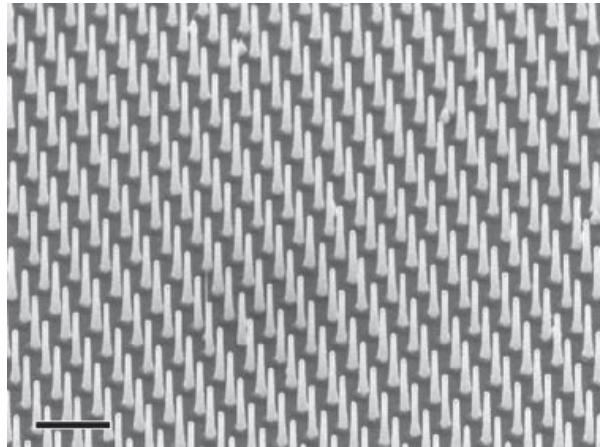
E. Kapon – LPN - EPFL

Nanowires: top-down approach

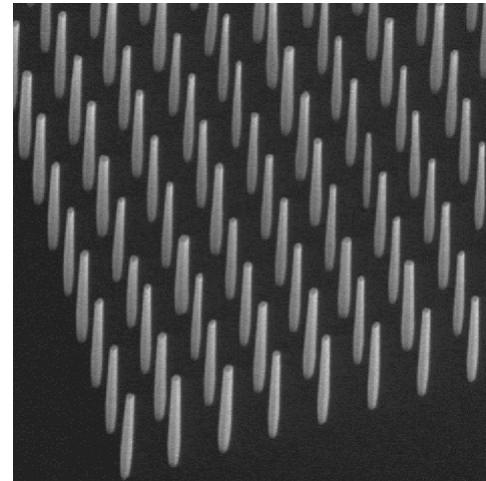
Focused ion beam (FIB)



Nanowires: bottom-up approach

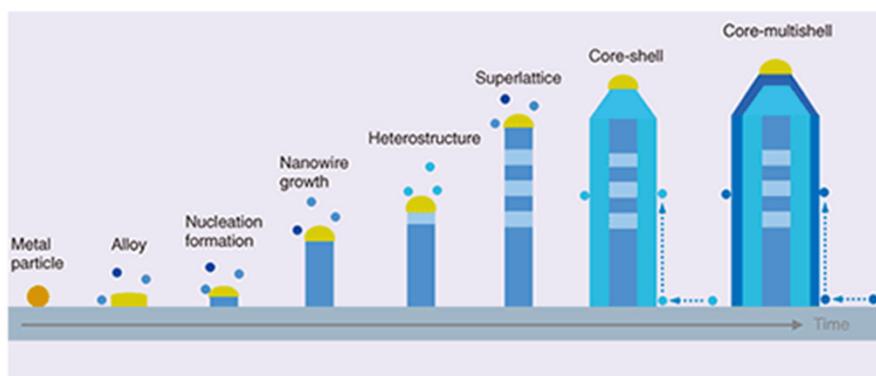


TU Eindhoven
Ordered InP
NW array

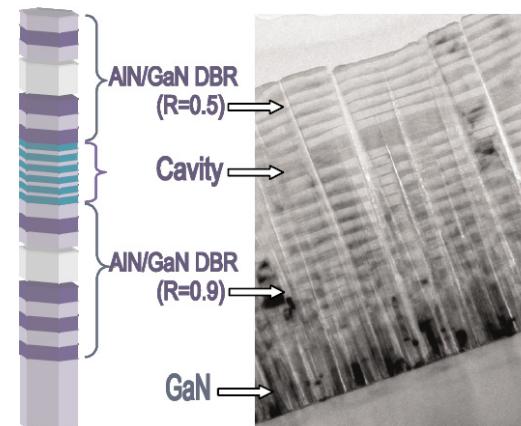


NIST
Ordered GaN
NW array

NTT technical review

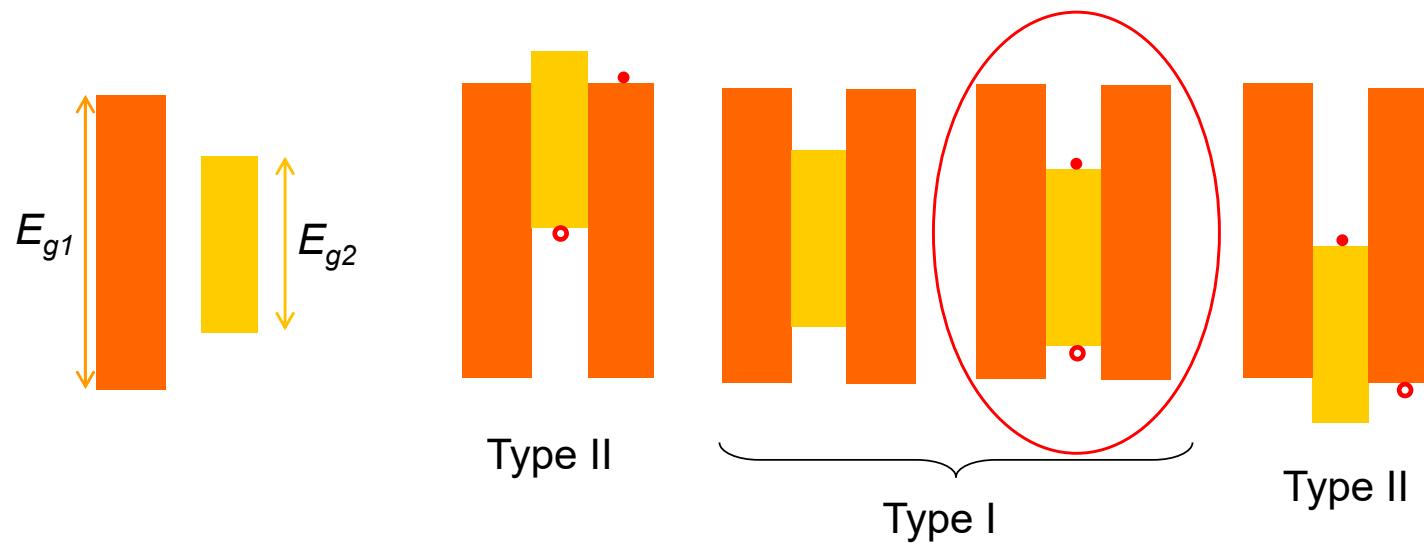


Univ. Politcn. Madrid



Heterostructures: band offset

Different configurations



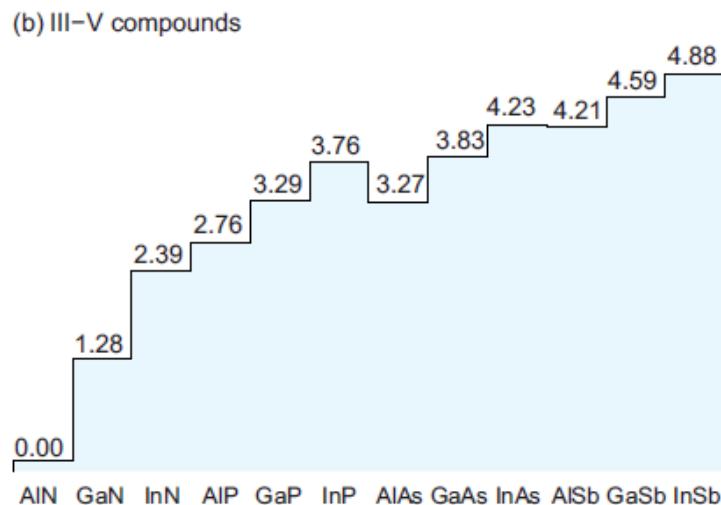
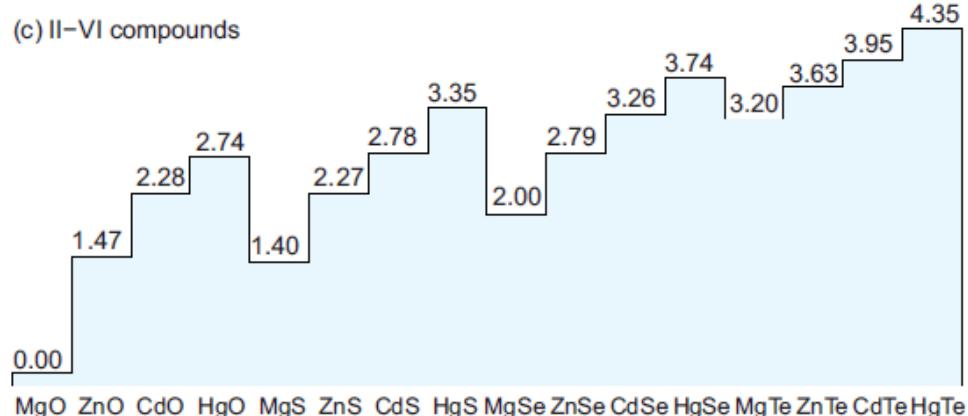
In III-V semiconductor compounds sharing the same anion: $\Delta V_{VB} = 0.3 \times \Delta E_g$

⇒ Common anion rule

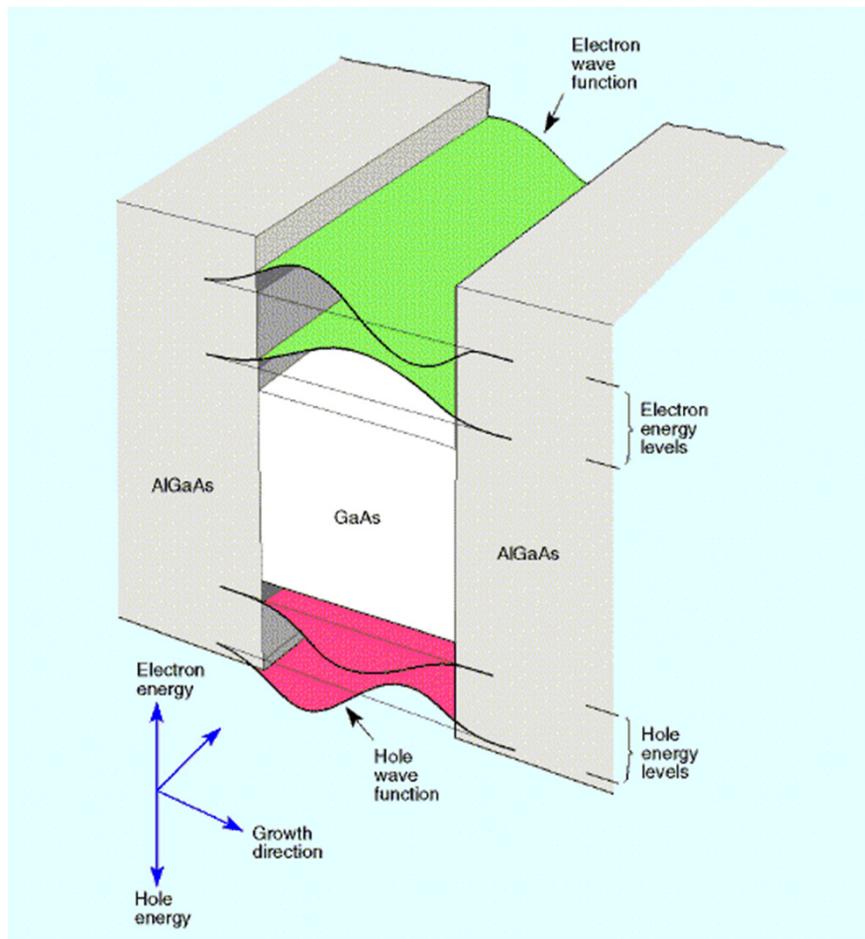
Heterostructures: band offset

Valence band edge offsets

Numbers are expressed in eV!



Heterostructures: electronic states



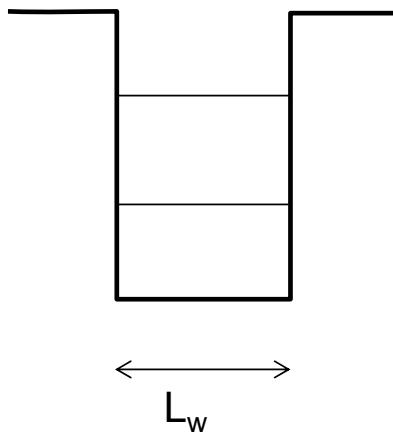
Rectangular quantum well

Quantized energy levels in CB and VB

Parameters to be considered:

- Well thickness
- Barrier height
- Carrier effective mass
- Dielectric mismatch

The quantum well: confinement effects



What should be the well thickness to ensure a strong quantum confinement?

$$1. \quad E = \frac{\hbar^2 k^2}{2m^*} \Rightarrow \lambda_{dB} = \frac{\hbar}{\sqrt{2m^* E}} \quad (\text{with } E \approx 5 \text{ eV})$$

$$\lambda_{dB} \approx 21 \text{ \AA} \text{ for GaAs}$$

$$\lambda_{dB} \approx 12 \text{ \AA} \text{ for GaN}$$

Typical ionization energy for e^-

2. 3D Bohr radius \Rightarrow extent of the excitonic wavefunctions

$$a_{3D, \text{GaAs}} \approx 11 \text{ nm}, a_{3D, \text{GaN}} \approx 3 \text{ nm}$$

Quantum confinement effects significant only for very small objects (1-20 nm)

Quantum well energy levels

Conduction electron energy levels

Approximation of the envelope wavefunction

$$\psi = \sum_{A,B} e^{i\mathbf{k}_\perp \cdot \mathbf{r}_\perp} u_{ck}^{A,B}(\mathbf{r}) \chi_n(z)$$

in-plane wavefunction
envelope wavefunction
Periodic part of Bloch wavefunction

Separation of in-plane (x-y) and vertical (z) components

$$\left(-\frac{\hbar^2}{2m_e^*(z)} \frac{\partial^2}{\partial z^2} + V_c(z) \right) \chi_n(z) = \varepsilon_n \chi_n(z)$$

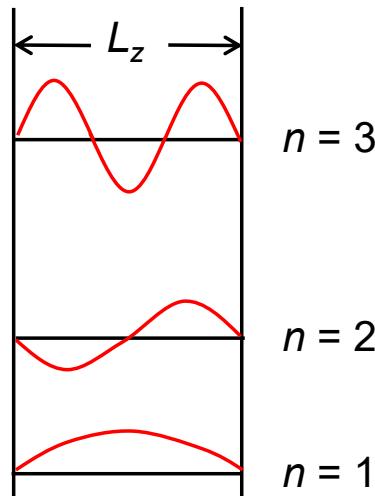
1D Schrödinger-like equation

electron effective mass
confinement energy of the carriers

Continuity at the interfaces of (i) $\chi_n(z)$ and (ii) particle current $(1/m_e^)(\partial \chi_n / \partial z)$*

Quantum well energy levels

Infinite barrier height (1D case), $V_c = \infty$



$$-\frac{\hbar^2}{2m} \frac{\partial^2 \chi_n}{\partial z^2} = \varepsilon_n \chi_n \quad \text{i.e.} \quad \frac{\partial^2 \chi_n}{\partial z^2} + k_n^2 \chi_n = 0 \quad \text{with} \quad k_n^2 = \frac{2m\varepsilon_n}{\hbar^2}$$

Solutions have the general expression:

$$\chi_n(z) = A \sin(k_n z) + B \cos(k_n z)$$

with the boundary conditions:

$$\chi_n(0) = \chi_n(L_z) = 0$$

hence $\chi_n(z) = A \sin(k_n z)$ with $k_n = \frac{n\pi}{L_z}$

$$\varepsilon_n = \frac{n^2 \pi^2 \hbar^2}{2m_e^* L_z^2}$$

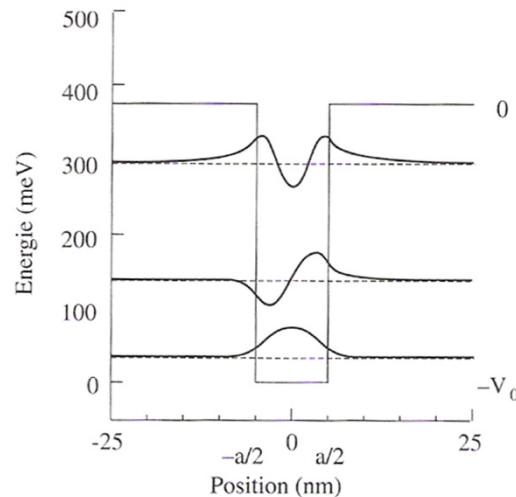
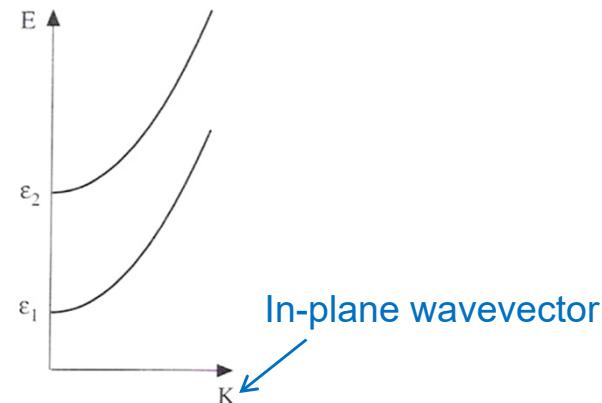
$$\int_{-\infty}^{+\infty} |\chi_n(z)|^2 dz = 1 = A^2 \int_0^{L_z} \sin^2(k_n z) dz = A^2 \frac{L_z}{2} \Rightarrow A = \sqrt{\frac{2}{L_z}}$$

$$\chi_n = \sqrt{\frac{2}{L_z}} \sin\left(\frac{n\pi z}{L_z}\right)$$

Dimension of the 1D wavefunction equal to $L^{-1/2}$!
 $\Rightarrow \chi_n$ dimensionality $\propto L^{-d/2}$

Quantum well energy levels

Finite barrier height¹



$$-\nabla \frac{\hbar^2}{2m^*(z)} \nabla \psi(r) + V(z)\psi(r) = E\psi(r)$$

The function ψ can be written as follows

$$\psi(r) = \chi_n(z) \exp(i\mathbf{K} \cdot \mathbf{R})$$

$$\left[-\frac{d}{dz} \frac{\hbar^2}{2m^*(z)} \frac{d}{dz} + V(z) \right] \chi_n(z) = \epsilon_n \chi_n(z)$$

$$\text{with } E_n = \epsilon_n + \frac{\hbar^2 K^2}{2m^*}$$

¹G. Bastard, Phys. Rev. B **24**, 5693 (1981) ([> 1200 citations](#)) and Phys. Rev. B **25**, 7584 (1982) ([> 600 citations](#)).

Quantum well energy levels

Finite barrier height

Even wave function case

$$\begin{aligned}\chi_n(z) &= A \cos kz, & \text{for } |z| < L/2 \\ &= B \exp[-\kappa(z - L/2)], & \text{for } z > L/2 \\ &= B \exp[+\kappa(z + L/2)], & \text{for } z < -L/2 \\ \text{where } \varepsilon_n &= \frac{\hbar^2 k^2}{2m_A^*} - V_0, & \varepsilon_n = -\frac{\hbar^2 \kappa^2}{2m_B^*}, & -V_0 < \varepsilon < 0\end{aligned}$$

Continuity conditions at $z = \pm L/2$ yield

$$\begin{aligned}(k/m_A^*) \tan(kL/2) &= \kappa/m_B^* & \text{Eqs. solved numerically} \\ (k/m_A^*) \cot(kL/2) &= -\kappa/m_B^* & \text{or graphically}\end{aligned}$$

Number of bound states

$$1 + \text{Int} \left[\left(\frac{2m_A^* V_0 L^2}{\pi^2 \hbar^2} \right)^{1/2} \right] \quad \text{if } m_A^* = m_B^*$$

Odd wave function case

$$\begin{aligned}\text{or } \chi_n(z) &= A \sin kz, & \text{for } |z| < L/2 \\ &= B \exp[-\kappa(z - L/2)], & \text{for } z > L/2 \\ &= -B \exp[\kappa(z + L/2)], & \text{for } z < -L/2\end{aligned}$$

Inversion symmetry around the center of the well (\Rightarrow parity of the wave function)

